pybird.projection module
- pybird.projection.Hllp(l, lp, x)[source]
Fiber collision effective window method auxiliary function
- pybird.projection.fllp_IR(l, lp, k, q, Dfc)[source]
Fiber collision effective window method auxiliary function
- pybird.projection.fllp_UV(l, lp, k, q, Dfc)[source]
Fiber collision effective window method auxiliary function
- class pybird.projection.Projection(xout, with_ap=False, H_fid=None, D_fid=None, with_survey_mask=False, survey_mask_arr_p=None, survey_mask_mat_kp=None, with_binning=False, binsize=None, fibcol=False, with_wedge=0, wedge_mat_wl=None, with_redshift_bin=False, redshift_bin_zz=None, redshift_bin_nz=None, co=<pybird.common.Common object>)[source]
Bases:
object
A class for applying observational projection effects to power spectra and correlation functions.
The Projection class handles various observational effects that transform the theoretical prediction into a form that can be directly compared with survey data. These effects include:
Alcock-Paczynski (AP) effect: Accounts for the distortion due to assuming an incorrect fiducial cosmology when converting redshifts to distances.
Survey window functions: Convolves the power spectrum with the survey mask.
k-binning or interpolation: Maps the model k-array to the data k-array.
Fiber collision corrections: Applies corrections for missing galaxy pairs due to fiber collisions in spectroscopic surveys.
Multipole to wedge conversion: Transforms multipole expansion to angular wedges.
Redshift bin evolution: Accounts for evolution of clustering across the redshift bin.
- xout
Output k or s array matching the data.
- Type:
ndarray
- # AP effect attributes
- muacc
Mu grid for AP integration.
- Type:
ndarray
- sgrid, musgrid
Meshgrid of s and mu for correlation function.
- Type:
ndarray
- kgrid, mukgrid
Meshgrid of k and mu for power spectrum.
- Type:
ndarray
- arrayLegendremusgrid
Legendre polynomials evaluated on musgrid.
- Type:
ndarray
- arrayLegendremukgrid
Legendre polynomials evaluated on mukgrid.
- Type:
ndarray
- # Survey window attributes
- arr_p
Array of p values for window function.
- Type:
ndarray
- mat_kp
Window function matrix.
- Type:
ndarray
- # Binning attributes
- binvol
Volume of each k-bin.
- Type:
ndarray
- # Wedge attributes
- wedge_mat_wl
Transformation matrix from multipoles to wedges.
- Type:
ndarray
- # Redshift bin attributes
- zz
Array of redshift values across the bin.
- Type:
ndarray
- nz
Number density as function of redshift.
- Type:
ndarray
- s, z1, mu
Meshgrid of separation, redshift and angle.
- Type:
ndarray
- n1
Number density evaluated on the meshgrid.
- Type:
ndarray
- L
Legendre polynomials for 3D reconstruction.
- Type:
ndarray
- Lp
Legendre polynomials for multipole integration.
- Type:
ndarray
- ft
Fourier transform object for s-k conversions.
- Type:
- AP(bird=None, q=None)[source]
Apply the AP effect to the bird power spectrum or correlation function Credit: Jerome Gleyzes
- dPuncorr(xout, fs=0.6, Dfc=0.6344990408735429)[source]
Compute the uncorrelated contribution of fiber collisions
kPS : a cbird wavenumber output, typically a (39,) np array fs : fraction of the survey affected by fiber collisions Dfc : angular distance of the fiber channel Dfc(z = 0.55) = 0.43Mpc
Credit: Thomas Colas
- dPcorr(xout, kPS, PS, many=False, ktrust=0.25, fs=0.6, Dfc=0.6344990408735429)[source]
Compute the correlated contribution of fiber collisions
kPS : a cbird wavenumber output, typically a (39,) np array PS : a cbird power spectrum output, typically a (3, 39) np array ktrust : a UV cutoff fs : fraction of the survey affected by fiber collisions Dfc : angular distance of the fiber channel Dfc(z = 0.55) = 0.43Mpc
Credit: Thomas Colas