pybird.bird module
- class pybird.bird.Bird(cosmology=None, with_bias=True, eft_basis='eftoflss', with_stoch=False, with_nnlo_counterterm=False, co=<pybird.common.Common object>, which='full')[source]
Bases:
object
Main class for computing power spectra and correlation functions for biased tracers.
The Bird (Biased tracers in redshift space) class computes the power spectrum and correlation function for biased tracers, given a cosmology and a set of EFT parameters. It implements perturbation theory calculations decomposed by multipoles and bias parameters, allowing for flexible assembly based on the chosen EFT basis.
- kin
k-array on which the input linear power spectrum is evaluated.
- Type:
ndarray
- Pin
Input linear power spectrum.
- Type:
ndarray
- Plin
Interpolated function of the linear power spectrum.
- Type:
callable
- P11
Linear power spectrum evaluated on internal k-array.
- Type:
ndarray
- P22
Power spectrum 22-loop terms.
- Type:
ndarray
- P13
Power spectrum 13-loop terms.
- Type:
ndarray
- Ps
Power spectrum multipoles (linear, 1-loop, NNLO).
- Type:
ndarray
- C11
Correlation function multipole linear terms.
- Type:
ndarray
- C22l
Correlation function multipole 22-loop terms.
- Type:
ndarray
- C13l
Correlation function multipole 13-loop terms.
- Type:
ndarray
- Cct
Correlation function multipole counter terms.
- Type:
ndarray
- Cf
Correlation function multipoles (linear, 1-loop, NNLO).
- Type:
ndarray
- fullPs
Full power spectrum multipoles (linear + loop).
- Type:
ndarray
- fullCf
Full correlation function multipoles (linear + loop).
- Type:
ndarray
- b11
EFT parameters for linear terms per multipole.
- Type:
ndarray
- b13
EFT parameters for 13-loop terms per multipole.
- Type:
ndarray
- b22
EFT parameters for 22-loop terms per multipole.
- Type:
ndarray
- bct
EFT parameters for counter terms per multipole.
- Type:
ndarray
- setBias(bias)[source]
Given an array of EFT parameters, set them among linear, loops and counter terms, and among multipoles
- Parameters:
bs (array) – An array of 7 EFT parameters: b_1, b_2, b_3, b_4, c_{ct}/k_{nl}^2, c_{r,1}/k_{m}^2, c_{r,2}/k_{m}^2
- setPs(bs=None, setfull=True)[source]
For option: which=’full’. Given an array of EFT parameters, multiplies them accordingly to the power spectrum multipole terms and adds the resulting terms together per loop order
- Parameters:
bs (array) – An array of 7 EFT parameters: b_1, b_2, b_3, b_4, c_{ct}/k_{nl}^2, c_{r,1}/k_{m}^2, c_{r,2}/k_{m}^2
- setCf(bs=None, setfull=True)[source]
For option: which=’full’. Given an array of EFT parameters, multiply them accordingly to the correlation function multipole terms
- Parameters:
bs (array) – An array of 7 EFT parameters: b_1, b_2, b_3, b_4, c_{ct}/k_{nl}^2, c_{r,1}/k_{m}^2, c_{r,2}/k_{m}^2
- setPsCf(bs, setfull=True)[source]
For option: which=’full’. Given an array of EFT parameters, multiply them accordingly to the power spectrum and correlation function multipole terms
- Parameters:
bs (array) – An array of 7 EFT parameters: b_1, b_2, b_3, b_4, c_{ct}/k_{nl}^2, c_{r,1}/k_{m}^2, c_{r,2}/k_{m}^2
- setfullPs()[source]
For option: which=’full’. Adds together the linear and the loop parts to get the full power spectrum multipoles
- setfullCf()[source]
For option: which=’full’. Adds together the linear and the loop parts to get the full correlation function multipoles
- setPsCfl(with_loop_and_cf=True)[source]
For option: which=’all’. Creates multipoles for each term weighted accordingly
- reducePsCfl()[source]
For option: which=’all’. Regroups terms that share the same EFT parameter(s) (more generally, the same time functions)
- setreducePslb(bs, what='full')[source]
For option: which=’all’. Given an array of EFT parameters, multiply them accordingly to the power spectrum multipole regrouped terms and adds the resulting terms together per loop order.
- Parameters:
bs (array) – An array of 7 EFT parameters: b_1, b_2, b_3, b_4, c_{ct}/k_{nl}^2, c_{r,1}/k_{m}^2, c_{r,2}/k_{m}^2
- setreduceCflb(bs, what='full')[source]
For option: which=’all’. Given an array of EFT parameters, multiply them accordingly to the correlation multipole regrouped terms and adds the resulting terms together per loop order.
- Parameters:
bs (array) – An array of 7 EFT parameters: b_1, b_2, b_3, b_4, c_{ct}/k_{nl}^2, c_{r,1}/k_{m}^2, c_{r,2}/k_{m}^2