pybird.nnlo module
- class pybird.nnlo.NNLO_counterterm(load=True, save=True, path='./', NFFT=256, co=<pybird.common.Common object>)[source]
Bases:
object
A class for computing next-to-next-to-leading-order counterterm corrections.
This class implements the k^4 P11 NNLO counterterm correction to the power spectrum and correlation function. It uses FFTLog to perform the spherical Bessel transforms between Fourier and configuration space.
- Mcf
Transformation matrices for correlation function.
- Type:
ndarray
- sPow
Array of s^n powers for correlation function calculation.
- Type:
ndarray
- kdeep
Deep k-array for accurate Fourier transforms.
- Type:
ndarray
- smask_out
Mask for s values above threshold.
- Type:
ndarray
- smask_in
Mask for s values below threshold.
- Type:
ndarray
- swin
Window function for correlation function smoothing.
- Type:
CoefWindow
- class pybird.nnlo.NNLO_higher_derivative(xdata, with_cf=False, NFFT=256, co=<pybird.common.Common object>)[source]
Bases:
object
A class for computing higher-derivative NNLO corrections.
This class implements the k^2 P1Loop NNLO correction to the power spectrum and correlation function. It provides the spherical Bessel transform between power spectrum and correlation function using FFTLog.
- M
Transformation matrices for correlation function.
- Type:
ndarray
- sPow
Array of s^n powers for correlation function calculation.
- Type:
ndarray
- kdeep
Deep k-array for accurate Fourier transforms.
- Type:
ndarray
- kmask
Mask for k values below threshold.
- Type:
ndarray
- smask_out
Mask for s values above threshold.
- Type:
ndarray
- smask_in
Mask for s values below threshold.
- Type:
ndarray
- swin
Window function for correlation function smoothing.
- Type:
CoefWindow
- k
k-array for power spectrum calculations.
- Type:
ndarray
- FT(Ps, l, window)[source]
Compute spherical Bessel transform from power spectrum to correlation function.