pybird.inference module
- class pybird.inference.Inference(free_cosmo_name, fiducial_cosmo, likelihood_config, cosmo_prior_config=None, boltzmann='class', free_nuisance_name=None, fiducial_nuisance=None, verbose=True)[source]
Bases:
object
A class for cosmological parameter inference using EFT of LSS.
The Inference class implements parameter inference for cosmological models using the Effective Field Theory of Large Scale Structure. It handles likelihood calculations, parameter sampling, minimization, and various inference techniques.
- cosmo_prior_covmat
Covariance matrix for cosmological parameter priors.
- Type:
ndarray
- L
Likelihood instance for calculations.
- Type:
- T
Taylor expansion instance if used.
- Type:
Taylor
- bias
Debiasing terms if computed.
- Type:
ndarray
- set_config_and_boltzmann(free_cosmo_name, free_nuisance_name, fiducial_cosmo, fiducial_nuisance, boltzmann='class')[source]
- init(minimize=False, cosmo_prior=False, ext_probe=False, ext_loglkl=None, jax_jit=False, measure=False, taylor_measure=False, debiasing=False, hessian_type=None, vectorize=False, taylor=False, order=3, verbose=True)[source]
- set_sampler(sampler='emcee', cosmo_prior=False, ext_probe=False, ext_loglkl=None, jax_jit=False, measure=False, taylor_measure=False, debiasing=False, hessian_type=None, vectorize=False, taylor=False, return_extras=False, options={}, verbose=True)[source]
- set_minimizer(minimizer='', cosmo_prior=False, ext_probe=False, ext_loglkl=None, jax_jit=False, taylor=False, options={}, order=3, verbose=True)[source]