Demo Notebooks ============== **New to PyBird?** Start with the **Correlator Tutorial** - it showcases the basic usage and key features of PyBird. All demo notebooks are located in the ``demo/`` directory. You can run them locally or `view them on GitHub `_. **Correlator Tutorial** (Start Here!) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The main PyBird tutorial covering: * Basic correlator setup and configuration * Computing power spectra and correlation functions * JAX acceleration and neural network emulator A quick note on the backend control: Regardless of installation mode, you control which backend PyBird uses: .. code-block:: python from pybird.config import set_jax_enabled # Use NumPy backend (works with both installation modes) set_jax_enabled(False) # Use JAX backend (works if JAX dependencies are available) set_jax_enabled(True) **View:** `correlator.ipynb on GitHub `_ | `NBViewer `_ **Likelihood Tutorial** ~~~~~~~~~~~~~~~~~~~~~~~ Data analysis with PyBird: * Loading BOSS data and configuring likelihoods * Parameter estimation and χ² evaluation * Survey effects and observational systematics **View:** `likelihood.ipynb on GitHub `_ | `NBViewer `_ **Complete Parameter Inference** ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ High-level PyBird workflow: * Parameter inference with the Run class * MCMC sampling and optimization * GetDist integration and posterior analysis **View:** `run.ipynb on GitHub `_ | `NBViewer `_ **JAX Benchmarking** ~~~~~~~~~~~~~~~~~~~~ Speed optimization and JAX features: * Performance comparison: Standard vs JAX vs Emulator * Up to 1000x speedup demonstration * Vectorized batch processing **View:** `jaxbird_benchmarking.ipynb on GitHub `_ | `NBViewer `_ **Fake Data Generation** ~~~~~~~~~~~~~~~~~~~~~~~~ Generate synthetic datasets: * Creating realistic mock catalogs * Survey geometry simulation * Statistical validation **View:** `fake.ipynb on GitHub `_ | `NBViewer `_ **Advanced Inference** ~~~~~~~~~~~~~~~~~~~~~~ Low-level inference control: * Custom sampler configuration * Fisher matrix calculations * Taylor expansion methods **View:** `inference.ipynb on GitHub `_ | `NBViewer `_ Running Locally --------------- **Quick Setup:** .. code-block:: bash # Clone and install git clone https://github.com/pierrexyz/pybird.git cd pybird pip install jupyter matplotlib getdist # Launch notebooks jupyter notebook demo/ Learning Path ------------- 1. **Start:** `correlator.ipynb` - Learn PyBird basics and JAX features 2. **Data Analysis:** `likelihood.ipynb` - Understand data fitting 3. **Complete Workflow:** `run.ipynb` - Master parameter inference 4. **Custom Analysis:** `inference.ipynb` + `fake.ipynb` - Build custom solutions 5. **Performance (optional):** `jaxbird_benchmarking.ipynb` - Test the speed of PyBird on your local machine Getting Help ------------ * `GitHub Issues `_ * Email the developers: `Pierre Zhang `_, `Guido D'Amico `_ or `Alexander Reeves `_ * Check the installation guide: :doc:`installation`